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Abstract 35 

The methane chemical sink estimated by atmospheric chemistry models (bottom-up method) is 

significantly larger than estimates based on methyl-chloroform (MCF) inversions (top-down method). 

The difference is partly attributable to large uncertainties in hydroxyl radical (OH) concentrations 

simulated by the atmospheric chemistry models used to derive the bottom-up estimates. In this study, 

we propose a new approach based on OH precursor observations and a chemical box model. This 40 

approach improves the 3-dimensional distributions of tropospheric OH radicals obtained from 

atmospheric chemistry models and reconciles the bottom-up and top-down estimates of the methane 

sink due to chemical loss. By constraining the model simulated OH precursors with observations, the 

global tropospheric mean OH concentration ([OH]trop-M) is ~10×105
 molec cm-3 (which is 2×105 molec 

cm-3 lower than the original model-simulated global [OH]trop-M) and agrees with that obtained by the 45 

top-down method based on MCF inversions. With the OH constrained by precursor observations, the 

methane chemical loss is 471-508 Tg yr-1 averaged from 2000 to 2009. The new adjusted estimate is 

more consistent with the top-down estimates in the recent global methane budget by the Global Carbon 

Project (GCP) (459-516 Tg yr-1) than the bottom-up estimates using the original model-simulated OH 

fields (577-612 Tg yr-1). The overestimation of global [OH]trop-M and methane chemical loss simulated 50 

by the atmospheric chemistry models is caused primarily by the models’ underestimation of carbon 

monoxide and total ozone column, and overestimation of nitrogen dioxide. Our results highlight that 

constraining the model simulated OH fields with available OH precursor observations can help improve 

the bottom-up estimated methane sink.  
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Introduction 

Methane (CH4) is a potent greenhouse gas, with its 100-year global warming potential 27 (for non-fossil 

CH4) and 30 times (for fossil CH4) times that of CO2 (Forster et al., 2021). The tropospheric CH4 

mixing ratios have increased by more than 1.6 times between pre-industrial and the present day, 

resulting in 0.54 ±0.11 W m-2 radiative forcing from 1750 to 2019 (Forster et al., 2021). After a short-65 

term stabilization during 2000-2006, the atmospheric methane mixing ratio rose increasingly quickly 

from 5 ppbv yr-1 in 2006 to 17 ppbv yr-1 in 2021 based on surface networks (Dlugokencky, 

NOAA/GML,2022). The rapid growth in atmospheric CH4 over the recent decade further challenges 

meeting the 1.5-2.0℃ targets of the Paris Agreement (Nisbet et al., 2019) and therefore is becoming an 

increasing concern (Jackson et al. 2020).  70 

 

Understanding the drivers of atmospheric methane changes rely on accurate estimates of the global 

methane budget, as methane concentrations in the atmosphere are the net balance between emissions 

and sinks. To estimate this budget, the Global Carbon Project (GCP) has established the global CH4 

budget by gathering up-to-date observations and model information (Kirschke et al. 2013; Saunois et al., 75 

2016; 2017; 2020). One of the remaining largest uncertainties, as pointed out by the most recent CH4 

budget (Saunois et al., 2020), is the chemical loss of CH4. The chemical loss of CH4 stems mainly 

through the reaction of CH4 with hydroxyl radical (OH), which is also the most important CH4 sink.  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

The hydroxyl radical (OH) is a key species in tropospheric chemistry that reacts with most greenhouse 80 

gases and air pollutants (Levy, 1971), being the main oxidant of the lower atmosphere. Due to its 

extremely short lifetime (typically 1 second) and spatial variability, direct observations do not allow for 

the quantification of the global [OH] distributions. The [OH] for calculating the chemical sink of CH4 is 

thus estimated either from top-down or bottom-up methods. The top-down method estimates [OH] 

https://doi.org/10.5194/acp-2022-556
Preprint. Discussion started: 31 August 2022
c© Author(s) 2022. CC BY 4.0 License.



4 

 

mainly through inversions constrained by independent observations of 1-1-1trichloroethane (methyl 85 

chloroform, MCF), assuming that emissions of this compound are well known. Such MCF-based top-

down method has been widely used in the scientific community to derive OH trends but it can only 

yield the global to latitudinal mean [OH] due to the sparse MCF observations and does not represent the 

chemical feedback on OH (e.g., Prinn et al., 2001; Bousquet et al., 2005; Montzka et al., 2011; Naus et 

al., 2021; Patra et al., 2020). Bottom-up approaches on the other hand simulate the [OH] by atmospheric 90 

chemistry models to account for the chemical mechanisms that determine OH production and loss, but 

their estimates of the global mean [OH] usually disagree with MCF-based estimates (Naik et al., 2013; 

Zhao et al., 2019).  

 

The global [OH] estimated by bottom-up model-based and top-down MCF-based methods are different 95 

in magnitudes, inter-annual variations, and trends, resulting in large differences in estimated CH4 sinks 

between the two methods. In the last global CH4 budget, most of the OH fields used to estimate the 

bottom-up CH4 sink were obtained from the atmospheric chemistry models that participated in the 

IGAC/SPARC Chemistry-Climate Model Initiative Phase-1 (CCMI-1) project. However, these models 

showed a wide range of 9.4-14.4×105 molec cm-3 in global airmass-weighted tropospheric mean [OH] 100 

([OH]trop-M) (Zhao et al., 2019; Saunois et al., 2020 ), thus mostly higher than the values estimated by 

the MCF-based inversions (~10×105 molec cm-3; Prinn et al., 2001; Bousquet et al., 2005). Indeed, the 

mean CH4 chemical loss for 2000-2009, as calculated by bottom-up approaches, is 595 Tg yr-1 (range 

489-749 Tg yr-1), much higher than the 505 Tg yr-1 (range 459-516 Tg yr-1) estimated by top-down CH4 

inversions (Saunois et al., 2020). Those top-down inversions using box models conclude that decreased 105 

[OH] and therefore CH4 chemical loss after the mid-2000s can explain the resumed CH4 increase since 

2006 (Turner et al., 2017; Rigby et al., 2017) while more recent 3D inversions show no significant trend 

in [OH] after 2000 (Naus et al., 2021; Patra et al., 2021). In contrast to top-down MCF-based inversions, 
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atmospheric chemistry models simulate a continuous increase in [OH] and consequently CH4 chemical 

loss from the 1980s (Zhao et al., 2020b).  110 

 

Reconciling the bottom-up and top-down estimates of the methane chemical sink is essential for a more 

accurate estimate of the global methane budget and to better attribute the observed changes in 

atmospheric growth rates of CH4. One way to improve the bottom-up estimates of the CH4 sink and thus 

reconcile the difference is to correct the [OH] simulated by atmospheric models using observations of 115 

OH precursors. Indeed, uncertainties in the [OH] simulated by atmospheric models can be attributed to 

biases in precursor concentrations. For example, Naik et al. (2013) found that an underestimation of 

carbon monoxide (CO) in the Northern Hemisphere can contribute to the overestimation of [OH] in this 

hemisphere; Strode et al. (2015) estimated that removing the model bias in O3 and water vapor (H2O(g)) 

and reducing northern hemispheric nitrogen oxides (NOx=NO+NO2) emissions can reduce a high bias in 120 

the global OH burden by 10%. In addition, the budget analysis of OH production and loss showed that 

about 90% of OH production is directly related to stratospheric and tropospheric ozone (O3), H2O(g), and 

nitrogen oxide (NO), and ~60% of OH is removed by reaction with CO, CH4 and formaldehyde (CH2O) 

(Lelieveld et al., 2016; Zhao et al., 2020b). Thus, bottom-up estimates of the CH4 sink from chemistry 

transport models can be improved if one can reduce the biases due to these OH precursors in modeled 125 

[OH].  

 

Fortunately, several satellites have collected long-term continuous observations of the aforementioned 

OH precursors with global coverage, providing the opportunity to evaluate and improve bottom-up 

estimates of the CH4 sink. In this context, the main objective of this study is to reconcile the bottom-up 130 

and top-down estimates of the CH4 sink by improving the atmospheric model simulated OH fields using 

multiple satellite observations and meteorological data from reanalysis. As a result, top-down estimates 
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of CH4 emissions will also benefit from the improved 3D distributions of [OH] (Zhao et al., 2020a; 

Saunois et al. 2020). We first evaluate the OH precursors (CO, CH4, O3, CH2O, and NO2, the total 

column O3, and H2O(g)) simulated for the year 2010 by the CESM1-CAM4chem and GEOSCCM; these 135 

models participated in the CCMI-1 project and were used to estimate the global methane sink in 

Saunois et al. (2020) and represent two different chemical mechanisms. We then estimate the 

observation-based OH fields by correcting model biases of the two modeled OH fields due to the above-

mentioned OH precursors using the Dynamically Simple Model of Atmospheric Chemical Complexity 

(DSMACC). By doing so, we quantify the bias in tropospheric [OH] attributable to each precursor. 140 

Finally, we estimate the chemical sink of CH4 using the observation-based OH field and, based on the 

uncertainties inferred for [OH], we reveal the dominant factors contributing to the uncertainties in CH4 

chemical sink at the global and regional scales. 

 

2 Method 145 

2.1 Observational data 

The total column O3, which mainly influences the O (1D) photolysis rate, is constrained by the National 

Aeronautics and Space Administration (NASA) Solar Backscatter Ultraviolet (SBUV) Merged Ozone 

Data Set (MOD) (Frith et al., 2014). The SBUV/MOD column O3 data are derived by combining 

observations from nine SBUV-type instruments aboard the NASA Aura satellite. The monthly 5° zonal 150 

mean O3 columns are available from January 1970 to December 2018. 

 

Tropospheric O3 is important in determining OH production. We constrain its spatial distributions using 

the tropospheric column O3 data from the combined Aura Ozone Monitoring Instrument/Microwave 

Limb Sounder (OMI/MLS) satellite observations, which are generated by subtracting the co-located 155 

MLS limb measurements (integrated over the stratosphere to derive stratospheric column ozone) from 
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total column ozone retrieved by OMI, an Ultraviolet/Visible nadir solar backscatter spectrometer 

(Ziemke et al., 2006).  

 

The tropospheric nitrogen oxide family (NOx=NO+NO2) participates in both OH production (reaction 160 

of nitrogen oxide (NO) with hydroperoxyl radical (HO2) or organic peroxy radicals (RO2)) and loss 

(mainly reaction of NO2 with OH). In the Dynamically Simple Model of Atmospheric Chemical 

Complexity (DSMACC) used in this study (see section 2.3), the NOx family is constrained by either 

NO2 or NO concentrations. We constrain the spatial distributions of boundary layer NOx family use 

satellite observations of NO2 tropospheric column density use the Quality Assurance for Essential 165 

Climate Variables (QA4ECV) OMI NO2 retrieval product (Boersma et al., 2018). Due to its short 

lifetime, NOx emitted from the surface mainly remains within the planetary boundary layer. Thus, 

satellite-retrieved vertical column densities are widely used in understanding the NO2 distributions 

within the boundary layer instead of the whole troposphere (e.g., Cooper et al., 2020; Geddes et al., 

2017).  170 

 

We also constrain tropospheric CO, CH4, and CH2O to better represent OH loss in the troposphere. 

Distributions of CO and CH2O are taken from 4D variational data assimilation of tropospheric CO 

column retrieved from the spaceborne Measurements Of Pollution In The Troposphere instrument v7 

TIR-NIR product (MOPITT v7, Deeter et al., 2017) and column CH2O OMI version product (OMI 175 

version3, González Abad et al. 2015), respectively (Zheng et al., 2019). CH4 distributions are taken 

from data assimilation of surface CH4 observations (Zhao et al., 2020a) mainly from the U.S. National 

Oceanic and Atmospheric Administration (NOAA/ESRL, Dlugokencky et al. (1994)). The assimilated 

surface CO concentration and CH4 profiles show good agreement with independent ground-based 

observations and aircraft observations, respectively (Zheng et al., 2019; Zhao et al., 2020a). 180 
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Meteorological conditions, mainly water vapor (H2O(g)) and air temperature (Ta) can also influence 

tropospheric [OH]. The H2O(g) (represented as specific humidity) and Ta are constrained by the second 

Modern-Era Retrospective analysis for Research and Applications (MERRA-2) reanalysis data from 

NASA’s Global Modeling and Assimilation Office (GMAO) (Gelaro et al. 2017). 185 

 

2.2 The 3D atmospheric chemistry model simulations 

The 3D distributions of OH fields and OH precursors for the year 2010 are taken from the REF-C1 

experiment of the IGAC/SPARC Chemistry-Climate Model Initiative Phase-1 (CCMI-1) (Hegglin and 

Lamarque, 2015; Morgenstern et al., 2017). The REF-C1 experiment is driven by state-of-the-art 190 

historical forcings and sea surface temperatures from observations and covers 51 years (1960-2010).  

 

We include simulations from two models with different chemical mechanisms: (i) the Community Earth 

System Model (CESM) using the Community Atmosphere Model version 4 as atmosphere component 

(CESM1 CAM4-chem, Tilmes et al., 2015; 2016) and (ii) the GEOS-5 Chemistry Climate Model 195 

(GEOSCCM; Molod et al., 2012,2015; Oman et al., 2011, 2013). The tropospheric chemistry of CESM1 

CAM4-chem is based on MOZART-4 mechanisms with minor updates (Emmons et al., 2010; Lamarque 

et al., 2012) and the GEOSCCM is based on the Global Modeling Initiative (GMI) chemistry and 

transport model (Duncan et al., 2007), which was originally developed for the GEOS-Chem model. The 

CO, NO2, O3, CH4, CH2O mixing ratios, total columns O3, and metrological conditions including Ta and 200 

H2O(g) simulated by CESM1 CAM4-chem and GEOSCCM in 2010 are compared with the observational 

data described in Section 2.1 in the supplementary (Fig. S1, S2, and S3). A detailed description of the 

two model settings related to OH and the CCMI-1 model experiments can be found in Morgenstern et al. 

(2017) and Zhao et al. (2019). 
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 205 

2.3 The chemical box model DSMACC 

Differing from 3D atmospheric chemistry models, which simulate the [OH] by gridded emissions 

inventories of its precursors, a chemical box model simulates [OH] by prescribing precursor 

concentrations and the meteorological states. Thus, one can estimate the sensitivity of [OH] to different 

precursor concentrations and meteorological parameters. Here we use the Dynamically Simple Model of 210 

Atmospheric Chemical Complexity (DSMACC; Emmerson and Evans, 2009) to estimate the sensitivity 

of [OH] to chemical species including CO, NO2, O3, CH4, CH2O, the total column O3, and 

meteorological conditions including Ta and H2O(g) following the approach of Nicely et al. (2018).  

 

The DSMACC model takes advantage of the chemical pre-processor (KPP) to generate the FORTRAN 215 

code for a chosen chemical mechanism. In this study, the DSMACC model is compiled with MOZART-

4 and GEOS-Chem chemical mechanisms, respectively, to be consistent with the associated 3D models 

CESM1 CAM4-chem and GEOSCCM. The clear-sky photolysis rates of chemical species are estimated 

by the tropospheric ultraviolet and visible (TUV) radiation model. Forced by meteorological variables 

(H2O(g), Ta, and pressure), total column O3, and gas concentrations simulated by the CESM1 CAM4-220 

chem and GEOSCCM, DSMACC run forward until reaching the diurnal steady state of OH. Nicely et al. 

(2018) have estimated the response of [OH] to changes in OH precursors by conducting DSMACC 

model simulations for broad latitude and pressure bins. Here we run the DAMSCC model for each 

model pixel of the 3D grid to better represent the heterogeneous spatial distributions of OH. For 

example, the CESM1 CAM4-chem has 144 (longitude) ×96 (latitudes) ×13 (pressure level) model grids 225 

in the troposphere. For each sensitivity experiment (Sect. 2.4), we therefore conduct 179,712 DSMACC 

model simulations (for CESM1 CAM4-chem grid) each month.  
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2.4 DSMACC experiments 

Table 1 lists the experiments conducted with the DSMACC chemical box model. The reference 230 

experiment (Ref_model in Table 1) is conducted by running DSMACC with the monthly mean chemical 

species concentrations and meteorological conditions simulated by the 3D models (CESM1 CAM4-

chem/ GEOSCCM) for each pixel using the corresponding chemical mechanisms. In the All_obs 

simulation, the CO, NO2, O3, CH4, and CH2O, total column O3, Ta, and H2O(g) are replaced with the 

available observational-based data (regrid to model resolution) as described in Section 2.2, while other 235 

DSMACC inputs (pressure and other chemical species) are the same as in Ref_model. The observation-

based [OH] ([𝑂𝐻]𝑜𝑏𝑠) in each 3D model pixel for two different chemical mechanisms is estimated by 

correcting [OH] as simulated by the corresponding 3D models ([𝑂𝐻]𝑚𝑜𝑑𝑒𝑙) by the ratio between [OH] 

simulated by DSMACC experiments for the All_obs ([𝑂𝐻]𝐷𝑆𝑀𝐴𝐶𝐶_𝑎𝑙𝑙_𝑜𝑏𝑠 ) and for the Ref_model 

([𝑂𝐻]𝐷𝑆𝑀𝐴𝐶𝐶_𝑅𝑒𝑓_𝑚𝑜𝑑𝑒𝑙) : 240 

 

                                            [𝑂𝐻]𝑜𝑏𝑠 = [𝑂𝐻]𝑚𝑜𝑑𝑒𝑙 ×
[𝑂𝐻]𝐷𝑆𝑀𝐴𝐶𝐶_𝑎𝑙𝑙_𝑜𝑏𝑠

[𝑂𝐻]𝐷𝑆𝑀𝐴𝐶𝐶_𝑅𝑒𝑓_𝑚𝑜𝑑𝑒𝑙
                                              (1) 

 

Then, we also perform 8 sensitivity experiments (xk_obs in Table 1) that only adjust one individual 

chemical species or meteorological condition (here and after represented as xk) to the observations (obs), 245 

keeping the other parameters equal to the simulated values from the chemistry-climate model. Because 

of high computing costs, we conduct the sensitivity experiments using only CESM1 CAM4-chem 

outputs. The OH biases due to each factor (𝛿[𝑂𝐻]𝑘) are estimated by introducing the [OH] simulated in 

the sensitivity experiment xk_obs ([𝑂𝐻]𝐷𝑆𝑀𝐴𝐶𝐶_𝑥𝑘_𝑜𝑏𝑠) as: 

 250 

                               [𝑂𝐻]𝐷𝑆𝑀𝐴𝐶𝐶_𝑥𝑘_𝑜𝑏𝑠 = [𝑂𝐻]𝑚𝑜𝑑𝑒𝑙 ×
[𝑂𝐻]𝐷𝑆𝑀𝐴𝐶𝐶_𝑥𝑘_𝑜𝑏𝑠

[𝑂𝐻]𝐷𝑆𝑀𝐴𝐶𝐶_𝑅𝑒𝑓_𝑚𝑜𝑑𝑒𝑙
                                           (2) 

                        𝛿[𝑂𝐻]𝑥𝑘 = [𝑂𝐻]𝑚𝑜𝑑𝑒𝑙 − [𝑂𝐻]𝐷𝑆𝑀𝐴𝐶𝐶_𝑥𝑘_𝑜𝑏𝑠                                        (3) 

https://doi.org/10.5194/acp-2022-556
Preprint. Discussion started: 31 August 2022
c© Author(s) 2022. CC BY 4.0 License.



11 

 

 

2.5 Chemical loss of CH4 

We estimate the yearly tropospheric chemical loss of CH4 through reaction with OH (𝐿𝐶𝐻4+𝑂𝐻) at global 255 

and regional scale from 2000 to 2009 by integrating the reaction of CH4 with OH: 

 𝐿𝐶𝐻4+𝑂𝐻 = ∑ ∑ 𝐾(𝑇)𝑚(𝐶𝐻4)[𝑂𝐻]𝛿𝑡𝑡𝑖                              (4) 

Where i is the index of the model pixel and 𝛿𝑡 is the integration time step (3 hours). The monthly 3D 

distributions of CH4 mass (m(CH4)) during 2000-2009 are from data assimilation of surface CH4 

observations from NOAA/ESRL (Dlugokencky et al. 1994) and the Ta distributions are from MERRA-2 260 

reanalysis data (see Section 2.2). The reaction rate 𝐾(𝑇𝑎) is a function of Ta as given by Sander et al. 

(2011): 

𝐾(𝑇𝑎) = 2.45 × 10−12𝑒−
1775

𝑇𝑎                          (5) 

The contribution of each factor xk to the bias in 𝛿𝐿𝐶𝐻4+𝑂𝐻_𝑥𝑘 can be estimated as: 

𝛿𝐿𝐶𝐻4+𝑂𝐻_𝑥𝑘 = ∑ ∑ 𝐾(𝑇)𝑚(𝐶𝐻4)𝛿[𝑂𝐻]𝑥𝑘𝛿𝑡𝑡𝑖                    (6) 265 

With 𝐿𝐶𝐻4+𝑂𝐻, we further estimate the CH4 lifetime to reaction with tropospheric OH (𝜏𝐶𝐻4) through 

the global CH4 burden: 

𝜏𝐶𝐻4 =
∑ 𝑚(𝐶𝐻4)𝑖

𝐿𝐶𝐻4+𝑂𝐻
                              (7) 

 

3 Results 270 

3.1 Observation-based tropospheric [OH] 

3.1.1 Global tropospheric OH burden.  

The global airmass-weighted tropospheric mean [OH] ([OH]trop-M) simulated by CESM1 CAM4-chem 

and GEOSCCM in 2010 are 11.9×105 molec cm-3 and 12.6×105 molec cm-3, respectively. By adjusting 

OH precursors and meteorological conditions (total column O3, tropospheric O3, CO, CH4, CH2O, 275 

boundary layer NO2, H2O(g), and Ta) to the observations using the DSMACC model, we estimated the 
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observation-based [OH]trop-M to be 9.9×105 molec cm-3 and 10.4×105 molec cm-3 with CESM1 CAM4-

chem and GEOSCCM chemical mechanisms, respectively (Fig.1 and Table 2). Compared with the 

original OH fields simulated by CESM1 CAM4-chem and GEOSCCM, the observation-based OH 

fields reduce the model-simulated global [OH]trop-M by ~2×105 molec cm-3. The global [OH]trop-M 280 

estimated by the observation-based OH fields in this study is lower than the value estimated by 

Spivakovsky et al. (2000) (11.6×105 molec cm-3; S2000 OH field), which is used in the chemistry-

transport model (CTM) intercomparison experiment (TransCom-CH4) (Patra et al., 2011) but consistent 

with those estimated by MCF-based inversions (~10×105 molec cm-3; Bousquet et al., 2005; Korl and 

Lelieveld, 2003). The consistency with the MCF-based estimates indicates that our approach (correcting 285 

model bias through available observations) is capable of capturing the global OH burden. 

 

3.1.2 The OH spatial distribution. 

Fig. 1 and Fig. 2 show the spatial distribution and zonal average of the [OH]trop-M, respectively, 

estimated from the observation-based and original model simulated OH fields. The observation-based 290 

OH fields show similar spatial distributions as their respective original model simulations, with high 

[OH]trop-M (10-15×105 molec cm -3) over East Asia, South Asia, and Northern Africa, corresponding to 

the regions with high tropospheric O3, NO2, and H2O(g) (Fig. S1 and Fig. S3 ). The lowest [OH]trop-M is 

found over the high latitudes (<4×105 molec cm-3) due to less ultraviolet radiation and over the Amazon 

forest (4-8×105 molec cm-3) due to high biogenic non-methane volatile organic compounds (NMVOC) 295 

emissions. The observation-based [OH]trop-M averaged over the northern tropics (0-30°N) and northern 

mid-to-high latitudes (30-90°N) are >14×105 molec cm-3 and >7×105 molec cm-3, respectively, for both 

chemical mechanisms, which are higher than those over the southern tropics (12.2-13.6×105 molec cm-3) 
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and southern mid-to-high-latitudes (5.3-5.6×105 molec cm-3, Table 3 and Fig. 2). The two observation-

based OH fields show similar mean [OH] over most of the latitudinal bands except for the southern 300 

tropics (0-30°S), where the mean [OH]trop-M estimated by the GEOSCCM chemical mechanism is 1.4×

105 molec cm-3 higher than the one from  CESM1 CAM4-chem (Table 3 and Fig. 2). 

 

Compared to the original [OH]trop-M simulated by CESM1 CAM4-chem and GEOSCCM, adjusting to 

observations reduces the [OH]trop-M by 2-8×105 molec cm-3 over most regions except the tropical forests. 305 

The reduction of mean [OH]trop-M over the northern tropics (0°-30°N) and mid-to-high latitudes (30°-

90°N) are >3×105 molec cm-3 and >2×105 molec cm-3, respectively, which is larger than that the over the 

southern tropics (0°-30°S, by ~2×105 molec cm-3) and mid-to-high latitudes (30°-90°S, by 0.6×105 

molec cm-3). The Northern Hemisphere to Southern Hemisphere (N/S) ratios of the simulated OH fields 

are reduced from 1.35 to 1.24 for CESM1 CAM4-chem, and 1.26 to 1.15 for GEOSCCM. Although the 310 

N/S ratios of the observation-based OH fields are still higher than the 1, which is obtained from MCF-

based inversions (Bousquet et al., 2005; Patra et al., 2014), incorporating available observations has 

significantly reduced the model simulated N/S ratio. 

 

The spatial distribution of the observation-based [OH] of this study is different from the S2000 OH field. 315 

The S2000 OH field shows a high [OH]trop-M over the regions with biomass burning emissions (Fig. S4). 

Instead of considering the detailed spatial distributions of nitrogen oxides, Spivakovsky et al. (2000) use 

a series of NOt (NO2+NO+2N2O5+NO3+HNO2+HNO4) profiles for land and ocean over large regions 

(Fig. S5). As shown in Fig. S4 and Fig. S5, the highest [OH]trop-M over South America and Africa 

estimated by Spivakovsky et al. (2000) correspond to high NOt mixing ratios over these two regions. 320 

The [OH] shows high positive sensitivity to NOt in the free troposphere, due to low VOCs and NOt 

mixing ratios (Fig.S6). Using satellite observations, Choi et al. (2014) showed that the high NO2 mixing 
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ratios in the free troposphere are mainly located near polluted urban regions (e.g., North America, 

Europe, and Asia), which is more similar to the NO2 distribution simulated by 3D atmospheric models 

(Fig. S1). Thus, although the S2000 OH field gives an N/S ratio of 1, its spatial distribution may have 325 

biases due to the simplification in the NOt distributions.      

 

3.2 Contribution from individual factors to model biases in [OH]trop-M  

By conducting the sensitivity simulations listed in Table 1, we estimate the contribution of individual 

factors to model biases based on Equation 2-3. The sensitivity of OH to model biases in tropospheric O3, 330 

stratospheric O3, H2O(g), and NOx emissions have been tested in Strode et al. (2015) using GEOSCCM. 

In this Section, we extend the procedure of Strode et al. (2015) by including more factors: Ta, CO, 

CH2O, CH4, and NO2 in the boundary layer. 

 

Table 4 summarizes the contribution of each chemical precursor and meteorological condition to the 335 

difference between CESM1 CAM4-chem simulated and observation-based global [OH]trop-M. The total 

contribution of the 8 individual factors to the difference in global [OH]trop-M estimated from the 

simulation xk_obs is 2.0×105 molec cm-3 (Table 4), consistent with that estimated from the simulation 

All_obs (Table 2), indicating that the nonlinear effect of atmospheric chemistry is negligible on the 

global scale. Indeed, although the atmospheric OH is produced and removed through complex nonlinear 340 

chemical reactions, one can infer the large-scale [OH]trop-M changes by roughly summing the influence 

from individual factors.  

 

3.2.1 Contribution from CO 

CO is the largest OH sink in the troposphere (Lelieveld et al., 2016; Zhao et al., 2020b). The sensitivity 345 

simulation CO_obs shows that a 1 ppbv increase in CO can result in a decrease in [OH] by up to more 
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than 3×104 molec cm-3 (Fig. S6). Compared with the CO distributions from inversions that assimilated 

MOPITT observations, the CESM1 CAM4-chem underestimates the global tropospheric mean CO 

mixing ratio by 24 ppbv (Fig. S1). Based on the DSMACC simulations CO_obs and Ref_CESM (Table 

1), we find that the negative bias in CO contributes most to the difference in the modeled versus 350 

observation-based [OH]trop-M (1.3×105 molec cm-3; Table 4 and Figure 3). The underestimation of CO is 

common in atmospheric models and was treated either as a cause or an effect of the overestimated [OH] 

in previous studies (Naik et al., 2013; Monks et al. 2015; Stode et al., 2015). For example, based on the 

ACCMIP simulations, Naik et al. (2013) found that the positive bias in [OH] was most likely due to the 

underestimation of CO when compared with both satellite and surface observations. In contrast, Strode 355 

et al. (2015) did sensitivity simulations using the GEOSCCM model and showed that reducing OH bias 

could improve the accuracy of modeled CO. In this study, we do not intend to solve the cause/effect 

issue between CO and OH, since the discrepancy in [OH]trop-M of 1.3×105 molec cm-3 could also be 

understood as the global tropospheric [OH] changes that would be needed to simulate the observed CO.    

 360 

The underestimation of the CO mixing ratio is larger over the Northern Hemisphere (30 ppbv) than over 

the Southern Hemisphere (18 ppbv) (Fig.S1). The largest bias in [OH]trop-M induced by CO  is found 

over the northern tropics (1.9×105 molec cm-3) followed by those over the northern mid-to-high latitude 

regions and the southern tropics (1.2×105 molec cm-3; Table 4 and Fig. 2). Naik et al. (2013) 

demonstrated that the model bias in CO contributes to the overestimation of the modeled N/S ratio in 365 

[OH]trop-M. In this study, although the underestimation of CO leads to a larger positive bias of [OH]trop-M 

over the Northern Hemisphere than the Southern Hemisphere, the observation-based adjustment only 

reduces the positive bias of the N/S ratio by 0.02. This means that the N/S difference of the CO bias is 

not sufficient to explain the inconsistency between the CESM1 CAM4-chem simulated and MCF-based 

N/S ratio in [OH]trop-M.  370 
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3.2.2 Contribution from tropospheric O3  

Tropospheric O3 can contribute to both primary and secondary OH production. Compared to satellite 

observations from OMI, CESM1 CAM4-chem simulations show a large overestimation of tropospheric 

O3 over the 15-60°N (up to 14 DU, 40%) and an underestimation (14 DU, 40%) over the tropics and 375 

Southern Hemisphere (Fig. S1).  

 

At the global scale, the model bias in O3 leads to a negative bias on [OH]trop-M by 0.3×105 molec cm-3, 

much smaller than that caused by CO (Table 4). However, at the regional scale, The CESM1 CAM4-

chem simulated [OH]trop-M is enhanced by ~1×105 molec cm-3 over the tropics (15°S-15°N) and ~0.5×380 

105 molec cm-3 over the mid-southern hemisphere (15°-60°S), while it is reduced by 0.1-0.3×105 molec 

cm-3 over the mid-northern hemisphere (15°-60°N) when adjusted to OMI/MLS tropospheric column O3 

(Fig. 2). The adjustment reduces the N/S ratio of [OH]trop-M by 0.07, still cannot explain the 

overestimation of the N/S ratio but leads to a larger correction than the one with CO alone.  

 385 

3.2.3 Contribution from boundary layer NO2. 

The sensitivity of OH to NO2 is highly variable. We estimate that a 1 ppbv increase in NO2 can lead to a 

change of [OH] ranging from -3×106 molec cm-3 to more than +10×106 molec cm-3, depending on the 

mixing ratio of NMVOCs (represented as HCHO+isoprene) and NO2 (Fig. S6). Compared to the 

QA4ECV NO2 retrieval product, CESM CAM-Chem overestimates tropospheric NO2 over most regions 390 

except North China and tropical forests (Fig. S1).  
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At the global scale, the overestimation of NO2 leads to a positive bias in [OH]trop-M by 0.3×105 molec 

cm-3 (Table 4). At the regional scale, correcting for the PBL NO2 does not influence the N/S ratio of OH. 

As shown in Fig. 3, the overestimation of PBL NO2 results in positive bias in [OH]trop-M over most of the 395 

continental regions. Over tropical and temperate oceans, one can also see that the slight overestimation 

in NO2 leads to a significate positive bias in OH by 0.5-1×105 molec cm-3 since the sensitivity of 

[OH]trop-M to NO2 can be very high (107 molec cm-3/ ppbv NO2) over the regions with low NOx and 

NMVOC mixing ratios. Over North China, although the model shows a large underestimation in NO2 

(Fig.S1), the [OH]trop-M is slightly smaller after adjustment. This is because over high NO2 regions, the 400 

[OH] is not sensitive to an increase in NO2 or even shows a negative response (Fig. S6).  

 

3.2.4 Contribution from total column O3  

The total column O3 mainly influences O1(D) photolysis through absorbing UV radiation. The CESM1 

CAM4-chem mainly underestimates the total O3 columns by up to ~10 DU over tropical regions 405 

compared with the SBUV/MOD observations (Fig. S2). On a global scale, the underestimation of the O3 

total column can lead to an overestimation of the [OH]trop-M by ~0.6×105 molec cm-3 (Fig. 2 and Fig. 3), 

comparable with that due to tropospheric O3. 

 

3.2.5 Contribution from CH4 and CH2O 410 

In CCMI-1 simulations, atmospheric chemistry models prescribe the lower boundary conditions for CH4 

following the Representative Concentration Pathway (RCP6.0). Compared to the posterior CH4 fields 

from inversions by assimilating the surface CH4 observations, the tropospheric mean CH4 mixing ratios 

used in the CESM CAM4-chem are ~80 ppbv lower over the tropical and extratropical regions with 

high biomass burning and anthropogenic emissions, and ~40 ppbv lower over other regions. But due to 415 
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the low sensitivity of [OH] to CH4 changes (Fig. S1), the underestimation in CH4 only leads to a small 

positive bias in the global tropospheric mean [OH] by 0.1×105 molec cm-3. 

 

CESM CAM4-chem overestimates CH2O by more than 50% over land but slightly underestimates 

CH2O over tropical oceans (Fig.S1). Since the CH2O contributes to only a small part (6%) of the total 420 

[OH] loss (Zhao et al., 2020b), such a large bias in the CESM CAM4-Chem simulated CH2O only leads 

to a small positive bias global mean [OH]trop-M by 0.1×105 molec cm-3 (Fig.3). 

 

3.2.6 Contribution from meteorological conditions 

H2O(g) is a major OH precursor that contributes to the primary production of OH and Ta can influence 425 

OH production and loss rates. Compared to MERRA2 reanalysis data, CESM CAM4-chem 

overestimates zonally averaged H2O(g) mixing ratios near the surface and around 800 hPa by ~1.5g/kg 

(Fig. S3). The sensitivity experiments show that a change in specific humidity by 1g/kg can lead to a 

change in [OH] by >3×105 molec cm-3 over the regions with high O(1D) photolysis and low NMVOC 

mixing ratios (Fig. S6). As shown in Table 4 and Fig.3, globally, the model bias in H2O(g) only leads to a 430 

small bias (0.1×105 molec cm-3) in [OH]trop-M, but regionally, the model bias in H2O(g) can lead to a bias 

in [OH]trop-M by the magnitude of 5.0×105 molec cm-3, even larger than that induced by the bias in CO. 

For Ta, the model only shows a small bias (<1℃) compared with MERRA2 reanalysis data (Fig. S3). 

Thus, model bias in [OH]trop-M induced by Ta is negligible (Fig. 4). 

   435 

3.3 Chemical sinks of CH4 as estimated by observation-based OH fields 

3.3.1 Global and regional OH chemical sink of CH4 
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Using the observation-based OH field, we estimate that the global tropospheric CH4 loss by reaction 

with tropospheric OH (LCH4+OH) averaged during the period 2000 through 2009 is 434 Tg yr-1 and 461 

Tg yr-1 for CESM1 CAM4-chem and GEOSCCM, respectively. These estimates are about 105 Tg yr-1 440 

lower than estimated by the original model simulated OH fields (540 Tg yr-1 and 565 Tg yr-1, 

respectively; Table 2). The corresponding CH4 lifetimes against tropospheric OH loss estimated by the 

two observation-based OH fields are 11.4 yr and 10.7 yr for CESM1 CAM4-chem and GEOSCCM, 

respectively, well within the range estimated by Prather et al. (2012) based on the MCF-inversions (11.2

±1.3yr) and much longer than estimated by the original model simulated OH fields (9.1 yr for CESM1 445 

CAM4-chem and 8.7 yr for GEOSCCM).  

 

As shown in Table 3, more than 70% of the tropospheric LCH4+OH occurs over tropical regions mainly 

due to both high [OH] and Ta. Constraining the tropospheric [OH] by precursor concentrations reduces 

the tropospheric LCH4+OH by ~30 Tg yr-1 (16%) over the southern tropics, ~50 Tg yr-1(21%) over the 450 

northern tropics, and ~25 Tg yr-1(25%) over the northern mid-to-high latitude as estimated by both 

CESM1 CAM4-chem and GEOSCCM OH fields. Over the southern mid-to-high latitude regions, there 

are only a few changes (6 Tg yr-1) in tropospheric LCH4+OH. Thus, constraining tropospheric [OH] by 

precursor concentrations changes the inter-hemispheric distribution of LCH4+OH. The values of LCH4+OH 

estimated by the observation-based OH fields are ~35 Tg yr-1 and ~75 Tg yr-1 lower than that estimated 455 

by the corresponding original model simulated OH fields over the Southern and Northern Hemispheres, 

respectively (Table 3). Thus, the inter-hemispheric difference of LCH4+OH (north－south) estimated by 

observation-based OH fields (60 Tg yr-1 by CESM1 CAM4-chem and 48 Tg yr-1 by GEOSCCM) is ~40% 

lower than estimated by the original model simulated OH fields (98 Tg yr-1 by CESM1 CAM4-chem 

and 81 Tg yr-1 by GEOSCCM). 460 
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3.3.2 Global total chemical sink of CH4 

We estimate the global total CH4 chemical sink for 2000-2009 by gathering: (1) the tropospheric 

LCH4+OH estimated using the original model-simulated and observation-based OH fields, (2) the CH4 loss 

in the stratosphere (26 Tg yr-1 estimated by CESM1 CAM4-chem and 36 Tg yr-1 estimated by 465 

GEOSCCM simulations) and CH4 oxidated by chlorine (11 Tg yr-1) given by Saunois et al. (2020). We 

then compare the chemical sink estimated in this study with that estimated by the bottom-up and top-

down methods given by previous GCP global CH4 budget (Saunois et al., 2016; 2020). 

 

As shown in Fig. 4, the bottom-up estimates in the GCP global CH4 budget (blue bars) have a large 470 

range (483-738 Tg yr-1 in Saunois et al. (2016) and 489-779 Tg yr-1 in Saunois et al. (2020)), much 

higher than those from the top-down method (514 Tg yr-1 in Saunois et al. (2016) and 459-516 Tg yr-1 in 

Saunois et al. (2020)). The CH4 sinks simulated by CESM1 CAM4-chem (549 Tg yr-1) and GEOSCCM 

(585 Tg yr-1) were included in the bottom-up estimates in Saunois et al. (2020) (green bar) and is 

slightly lower than the average value estimated using different OH fields (595 Tg yr-1).  475 

 

In this study, the global total CH4 chemical sinks estimated using the originally simulated tropospheric 

OH and constrained CH4 mixing ratios are 577 Tg yr-1 and 612 Tg yr-1 for CESM1 CAM4-chem and 

GEOSCCM, respectively, close to the mean values estimated by the bottom-up method (around 600 Tg 

yr-1) using different OH fields but much higher than the top-down estimates (around 500 Tg yr-1). It 480 

should be noted that the bottom-up estimates of the chemical loss of CH4 in previous GCP global CH4 

budget were calculated using model-simulated CH4 mixing ratios (Fig.4; Saunois et al. 2020). The CH4 

mixing ratios simulated by CESM1 CAM4-chem and GEOSCCM are lower than that used in this study 

(Fig. S1). Thus, the chemical sink of CH4 estimated in this study is higher than that estimated in Saunois 

et al. (2020) by ~30 Tg yr-1. After adjusting the main OH precursors to observations, the global 485 
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chemical sink of CH4 is 471-508 Tg yr-1, as estimated using the two observation-based OH fields, more 

consistent with top-down method estimates (~500Tg yr-1).  

 

The above analyses show that the large uncertainties in the bottom-up estimates of the CH4 chemical 

sink are attributable to the use of the model-simulated OH fields with known biases. Constraining the 490 

OH field with available precursor observations to correct the global [OH], the magnitude of the methane 

loss is more in line with top-down methane inversions. Therefore, we partly reconcile the bottom-up 

and top-down estimates of the CH4 sink. Although only two of seven bottom-up models synthesized in 

Saunois et al. (2020) are considered in this study, our approach can be generalized to other chemistry-

climate models. Instead of directly using the OH fields simulated from an atmospheric chemistry model, 495 

the bottom-up estimates can use the precursor observations and box-model based approach proposed 

here to reduce model biases of OH fields. 

   

3.3.3 Contribution from the model biases of individual OH precursors to chemical sink of CH4 

We further quantify the influence of model biases in individual OH precursors on the bottom-up 500 

estimates of CH4 chemical sink (𝛿LCH4+OH_xk). At the global scale, the underestimation of CO and total 

column O3 and the overestimation of NO2 by the CESM1 CAM4-chem lead to a positive bias of 60 Tg 

yr-1(11%), 22 Tg yr-1(4%), and 22 Tg yr-1 (4%) in tropospheric LCH4+OH (Fig.4 and Table 4), respectively, 

while an underestimation of tropospheric O3 leads to a negative bias of 17 Tg yr-1 (3%) in tropospheric 

LCH4+OH. Although the model bias of [OH]trop-M induced by H2O(g) is negligible on the global scale, the 505 

observation-based adjustment of H2O(g) leads to a reduction in tropospheric LCH4+OH by 10 Tg (2%), 

since the model overestimation of H2O(g) is concentrated over the mid-to-low latitude regions where 

tropospheric CH4 oxidation mainly occurs (Fig. S3). The model bias in CH2O and CH4 itself leads to a 

small positive bias of ~1% respectively on LCH4+OH. 
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 510 

As the tropospheric LCH4+OH mainly occurs over the mid-to-low latitude regions, the biases in [OH]trop-M 

over the high latitudes (north of 60 °N or south of 60 °S) due to an overestimation of CO and 

underestimation of H2O(g) (Fig. 2), do not substantively contribute to the bias in LCH4+OH (Fig. 5). Over 

the regions north of 15 °N, nearly all the precursors considered in this study contribute to the 

overestimation of LCH4+OH (55 Tg yr-1 in total), of which 47% (26 Tg yr-1) is contributed by model 515 

underestimation of CO. South of 15 ° N, the underestimation of tropospheric O3 results in an 

underestimation of LCH4+OH by 22 Tg yr-1
, partly offsetting the overestimation of LCH4+OH induced by CO 

(34 Tg yr-1) and other precursors (40 Tg yr-1 in total) (Fig. 5). As aforementioned, the inter-hemispheric 

difference of LCH4+OH derived from the observation-based OH fields is 48 Tg yr-1 smaller than estimated 

using the OH field originally simulated by CESM1 CAM4-chem. The biases in CO, tropospheric O3, 520 

and boundary layer NO2, lead to an overestimation of the inter-hemispheric difference of tropospheric 

LCH4+OH by 15 Tg yr-1, 15 Tg yr-1, and 9 Tg yr-1
, respectively, dominant the bias in the inter-hemispheric 

difference in tropospheric LCH4+OH, 

 

4 Conclusion and discussion 525 

In this study, we aim to reconcile the top-down and bottom-up estimates of the global CH4 sink and to 

quantify the contribution of each factor to the overestimation of tropospheric [OH] that is generally 

found in atmospheric chemistry models and to the consequent overestimation of CH4 chemical loss in 

the bottom-up method. To do so, we propose a new approach based on precursor observations and a 

chemical box model, to improve the 3D distributions of tropospheric OH radicals issued from 530 

atmospheric chemistry models.  
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We estimate two 3D observation-based OH fields based on three components: (i) simulated tropospheric 

[OH] and related chemical species from global 3D atmospheric chemistry models (here CESM1-

CAM4chem and GEOSCCM), (ii) the sensitivities of tropospheric [OH] to its precursors in each model 535 

grid cell estimated by the chemical box model DSMACC using a chemical mechanism similar to the 3D 

model, and (iii) observations of chemical species related to OH production and loss (CO, O3, boundary 

layer NO2, CH4, CH2O, and total column O3) and meteorological conditions (H2O(g) and Ta). The 

chemical box model DSMACC can be compiled using different chemical mechanisms, making it 

possible to apply this approach to other atmospheric chemistry models and improve the OH.  540 

 

The global [OH]trop-M estimated from observation-based OH fields is ~10×105 moelc cm-3 in 2010 based 

on two different chemical mechanisms, which is 2×105 molec cm-3 lower than the original model-

simulated global [OH]trop-M, consequently reaching consistency with the value derived by MCF-based 

inversions (around 10x105 molec cm-3; Bousquet et al., 2005; Korl and Lelieveld, 2003). The 545 

observation-based adjustments also change the latitudinal distribution of [OH], reducing the it's north to 

south ratios from 1.35 and 1.26 to 1.24 and 1.15 for CESM1 CAM4-chem and GEOSCCM, respectively, 

closer to the one obtained from MCF-based inversions (slightly smaller than 1). 

 

Based on the simulations from CESM1 CAM4-chem, globally, the overestimation of [OH]trop-M arises 550 

mainly from the underestimation of CO and total column O3, and the overestimation of boundary layer 

NO2, which contribute 1.3×105 molec cm-3, 0.4×105 molec cm-3, and 0.3×105 molec cm-3, respectively, to 

the bias in [OH]trop-M. For the N/S ratio of [OH]trop-M, the positive bias in [OH]trop-M over the Northern 

Hemisphere (0.1-0.3×105 molec cm-3) and the negative bias over the tropics and Southern Hemisphere 

(0.5-1.0×105 molec cm-3) due to tropospheric O3 dominate the higher N/S ratio of [OH]trop-M estimated 555 

by the CESM1 CAM4-chem than the observation-based OH field. At the regional scale, the model bias 
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in H2O(g) can lead to bias in [OH]trop-M even larger than that induced by CO. 

 

The global CH4 loss by reaction with tropospheric OH (LCH4+OH) estimated from the observation-based 

OH fields is 434 Tg yr-1 and 461 Tg yr-1 for CESM1 CAM4-chem GEOSCCM, respectively, averaged 560 

over 2000 to 2009, which is lower than that estimated from the original model simulated OH fields by 

around 105 Tg yr-1. Based on the results from CESM1 CAM4-chem, at the global scale, the 

underestimation of CO and total column O3, and overestimation of NO2 lead to positive biases in 

tropospheric LCH4+OH by 60 Tg yr-1(11%), 22 Tg yr-1(4%), and 22 Tg yr-1(4%), respectively, while an 

underestimation of tropospheric O3 leads to a negative bias in tropospheric LCH4+OH by 17 Tg yr-1(3%). 565 

The inter-hemispheric difference in the tropospheric LCH4+OH is therefore reduced by 40% (around 35 Tg 

yr-1) when estimated using the observation-based OH field. Although the bias in the N/S ratio of 

[OH]trop-M is dominated by the tropospheric O3 concentration, the positive bias in the inter-hemispheric 

difference of LCH4+OH is determined together by the biases in CO (15 Tg yr-1), tropospheric O3 (15 Tg yr-

1), and boundary layer NO2 (9 Tg yr-1). 570 

 

Using the tropospheric LCH4+OH estimated with our observation-based OH fields, the global total CH4 

chemical sink is 471-508 Tg yr-1. This quantification is more consistent with top-down estimates in the 

previous GCP global CH4 budget (459-516 Tg yr-1, Saunois et al., 2016; 2020) than it was before the 

adjustment (577-612 Tg yr-1). The bottom-up method in the previous GCP global CH4 budget estimated 575 

the CH4 chemical sink directly using the OH fields simulated by atmospheric chemistry models. 

However, the uncertainties in the model simulated OH lead to an unreliable range in the bottom-up 

estimated CH4 chemical sink, much higher than that estimated by the top-down method. Our results 

highlight that constraining the OH fields using available precursor observations can improve the 

bottom-up estimates of the CH4 sink and help reconcile the difference between the top-down and 580 
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bottom-up estimates of the CH4 sink.  

 

Although the observation-based 3D OH fields presented in this study can capture the global 

tropospheric OH burden and chemical loss of CH4, unresolved uncertainties remain. For example, the 

difference in global [OH]trop-M between the two observation-based OH fields estimated from CESM1 585 

CAM4-chem and GEOSCCM simulations is 0.6×105 molec cm-3. Such a difference is partly be 

attributable to their differences in chemical mechanisms. As discussed in Murray et al. (2021), the inter-

model differences in tropospheric [OH] and its responses to precursors are largely determined by the 

oxidative efficiency of NMVOCs and the lifetime of NOx simulated by the models. Reducing the 

uncertainties due to the modeled chemical mechanisms relies on additional observations to improve the 590 

simulation of NMVOCs oxidative efficiency and NOx lifetime. 

 

In addition, the data that we use to constrain the OH precursors come mainly from satellite observations 

and reanalysis data, of which the uncertainties are not considered in this study. For example, the 

MERRA-2 reanalysis data significantly overestimate H2O(g) in the upper troposphere (Jiang et al., 2015); 595 

The QA4ECV tropospheric NO2 vertical column density is lower compared with surface observations 

under the extreme high-pollution case compared with surface observations (Compernolle et al., 2020). 

Therefore, the performance of this method thus depends on the accuracy of observations used to 

constrain individual factors. Since the sensitivity of [OH] to each precursor is estimated by the chemical 

box model, we can easily improve the [OH] using the updated observational datasets. 600 

 

Another key factor that could influence the tropospheric OH burden but is unconstrained in this study is 

NO2 in the free troposphere. Although the NO2 mixing ratio is usually less than 1 ppbv in the free 

troposphere, the sensitivity of [OH] to NO2 can be very high in low NO2 regions. However, a potential 
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model bias due to lightning NOx emissions, which had proven to contribute significantly to the upper-605 

tropospheric [OH] burden (Murray et al., 2013; Turner et al., 2018), is not adjusted in our study. 

Satellite retrievals for upper tropospheric NO2 (e.g. Belmonte Rivas et al., 2015; Marais et al., 2021) 

could help quantify [OH] biases due to free tropospheric NO2 and the contribution of lightning NOx 

emissions.  

 610 

The observation-based adjustment reduces the simulated N/S ratio of [OH]trop-M by 0.1 only, which is 

still higher than the one obtained from MCF-inversions (less than 1.0). This difference indicates that the 

overestimation of N/S ratio by atmospheric models cannot be fully explained by the underestimation of 

CO and overestimation of O3 over the Northern Hemisphere as mentioned in previous studies (Naik et 

al. 2013). Including the chemical mechanism such as OH recycling by isoprene (Lelieveld et al. 2008) 615 

may help further reduce the N/S ratio for model-simulated OH fields. 

 

The new approach proposed here to improve the 3D OH fields and chemical loss of CH4 can be 

applicable broadly. It relies on observations of OH precursor concentrations that can be applied 

efficiently to any atmospheric chemistry model with a box-model (0D) available. Here we only apply 620 

this method to two models for one year (2010) and both of them agree with MCF-based inversions in 

terms of the global OH burden. One future research development is to generate observation-based OH 

fields for all the atmospheric chemistry models included in the GCP global CH4 budget and over a 

longer time period to see if higher consistency can also be achieved on longer timescales. It will also be 

important to assess how much uncertainty in [OH] means and trends can be further reduced and 625 

achieved in detail. 

 

Also, the CH4 emissions from top-down approaches used mostly a single OH field from Spivakosky 
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(2000), which is climatological data without any interannual variations. Some CH4-inversions used the 

OH fields from chemistry-climate or chemistry-transport models with the known aforementioned biases 630 

that may lead to bias in the inverted surface CH4 fluxes. Our OH product could be used instead in CH4 

inversions to better infer CH4 emissions and reduce the uncertainties in the global methane budget. 

Further work is necessary to consider the interannual changes in our observation-based estimates.    

 

Data availability 635 

The GEOSCCM OH fields are available at the Centre for Environmental Data Analysis 
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Table 1. The DSMACC model experiments. 

Species Simulations Description 

Ref Ref_model 
Chemical species and meteorological conditions from 3D model 

simulations for 2010. 

All All_obs 
All the chemical species and meteorological conditions listed below 

adjusted to match observations. 

NO2 NO2_obs_PBL Adjust boundary layer NO2 to match the OMI QA4ECV product. 

O3 O3_obs Adjust tropospheric O3 to match OMI/MLS product. 

CH4 CH4_obs Adjust tropospheric CH4 to match the assimilated data.  

CO CO_obs Adjust tropospheric CO to match the assimilated data. 

CH2O CH2O_obs Adjust tropospheric CH2O to match the assimilated data. 

O3 column O3col_obs Adjust total ozone column to match SBUV/MOD data. 

H2O(g) H2O_obs Adjust water vapor to MERRA-2 data. 

Ta Ta_obs Adjust air temperatures to MERRA-2 data. 

 

Table 2. Modeled and observation-based estimates of global [OH]trop-M, CH4 sink by tropospheric OH 

(LCH4+OH) averaged during 2000-2009, and the CH4 lifetime against tropospheric OH.   
 [OH]trop-M 

(105molec cm-3) 

LCH4+OH 
(Tg yr-1) 

CH4 

lifetime(yr) 

Modeled CESM1-CAM4chem 11.9 540 9.1 

 GEOSCCM 12.6 565 8.7 

Observation- 

based 

CESM1-CAM4chem 9.9 434 11.4 

GEOSCCM 10.4 461 10.7 

 940 

 

Table 3. The modeled and observation-based [OH]trop-M (in 105molec cm-3) averaged over latitudinal 

bands during 2000-2009. The corresponding tropospheric CH4 sink by OH (LCH4+OH) (in Tg yr-1) is 

given in brackets.   
 90°-30°S 30°S-0° 0°-30°N 30°-90°N 

Modeled CESM1-CAM4chem 5.9(49) 14.2(173) 17.8(226) 9.4(93) 

 GEOSCCM 6.2(50) 16.1(192) 18.5(229) 9.6(94) 

Observation

-based 

CESM1-CAM4chem 5.3(42) 12.2(144) 14.5(178) 7.2(69) 

GEOSCCM 5.6(46) 13.6(161) 14.9(183) 7.4(72) 
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Table 4. Contributions from individual factors to the difference in global [OH]trop-M and tropospheric 

CH4 sink by reaction with OH between CESM1-CAM4chem simulated and the corresponding 

observation-based OH fields (modeled－observation-based).  

 950 

 

  

Figure 1. Spatial distributions of air mass-weighted tropospheric mean [OH] ([OH]trop-M) in 2010 from 

model simulations (left) and constrained by observations (middle), and the difference between modeled 

and observation-based [OH]trop-M (right) estimated from CESM1-CAM4Chem (top) and GEOSCCM 955 

(bottom) simulations. The global mean values are shown inset in molec cm-3. 

 

  [OH]trop-M 

(105 molec cm-3) 

CH4 sink 
(Tg yr-1) 

H2O(g) 0.1 10 

Ta 0 0 

Column O3 0.4 22 

CO 1.3 60 

O3 -0.3 -17 

NO2 0.3 22 

CH4 0.1 5 

CH2O 0.1 6 

Total 2.0 108 
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Figure 2. (a) Zonal averaged [OH]trop-M of modeled (solid lines) and observation-based OH field (dashes 

lines) estimated from CESM1 CAM4-chem (yellow) and GEOSCCM (blue) simulations. (b) Difference 960 

of zonal averaged [OH]trop-M between modeled and observation-based OH fields. (c) Difference between 

CESM1 CAM4-chem simulated and observational-based zonal averaged [OH]trop-M (black line) and the 

contribution from each OH precursor (colored bars) for zonal averaged difference.  

 

  965 

Figure 3. Spatial distributions of the contribution of individual factors to the difference between 

CESM1 CAM4-chem simulated and observation-based (modeled － observation-based) [OH]trop-M. The 

global mean values are shown inset in molec cm-3. 
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Figure 4. Global total chemical loss of CH4 estimated by the bottom-up and top-down methods from 

previous GCP global CH4 budget (blue bars; Saunois et al., 2016; 2020), simulated by GEOSCCM and 

CESM1 CAM4-Chem which is included in the bottom-up estimates in Saunois et al. (2020) (green bar), 

and that estimated in this study using the model simulated and observation-based OH fields and 975 

assimilated surface observations of CH4 (black bars). The colored bar shows the contribution of 

individual factors to the difference in the chemical loss of CH4 between CESM1 CAM4-Chem 

simulated and the corresponding observation-based OH. The blue, green, and black bars are 

corresponding to the left axis and the colored bar is corresponding to the right axis. 

 980 

 

Figure 5. Same as Fig.2 but for the tropospheric CH4 sink by reaction with OH. 
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